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SUMMARY

In this paper, we describe an implicit hybrid finite volume (FV)/element (FE) incompressible Navier–
Stokes solver for turbulent flows based on the Spalart–Allmaras detached eddy simulation (SA-DES). The
hybrid FV/FE solver is based on the segregated pressure correction or projection method. The intermediate
velocity field is first obtained by solving the original momentum equations with the matrix-free implicit
cell-centered FV method. The pressure Poisson equation is solved by the node-based Galerkin FE method
for an auxiliary variable. The auxiliary variable is closely related to the real pressure and is used to
update the velocity field and the pressure field. We store the velocity components at cell centers and
the auxiliary variable at vertices, making the current solver a staggered-mesh scheme. The SA-DES
turbulence equation is solved after the velocity and the pressure fields have been updated at the end of
each time step. The same matrix-free FV method as the one used for momentum equations is used to
solve the turbulence equation. The turbulence equation provides the eddy viscosity, which is added to
the molecular viscosity when solving the momentum equation. In our implementation, we focus on the
accuracy, efficiency and robustness of the SA-DES model in a hybrid flow solver. This paper will address
important implementation issues for high-Reynolds number flows where highly stretched elements are
typically used. In addition, some aspects of implementing the SA-DES model will be described to ensure
the robustness of the turbulence model. Several numerical examples including a turbulent flow past a flat
plate and a high-Reynolds number flow around a high angle-of-attack NACA0015 airfoil will be presented
to demonstrate the accuracy and efficiency of our current implementation. Copyright q 2008 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Recently, we developed a hybrid finite volume (FV)/element (FE) solver [1] for incompressible
flows. The hybrid solver is based on the well-known pressure correction (projection) method [2, 3].
The solution procedure follows a segregated approach to decouple the pressure from the velocity.
The velocity field is updated by solving the momentum equation provided that a known pressure
field is given as a source term, through a cell-centered FV discretization. The pressure does not
directly enter the momentum equation. Instead, an auxiliary variable, which is closely related to
the pressure, takes the place of pressure in the momentum equation, providing pressure gradient
information. We put the auxiliary variable on the vertices of cells. This deployment provides a
convenient way to evaluate the pressure gradient using the local FE basis functions. The incremental
value of the auxiliary variable is computed by solving a Poisson equation using the Galerkin
finite element method. The auxiliary variable is then used to update the velocity field. After the
final velocity field is determined, the pressure can be updated using the auxiliary variable and the
velocity divergence field. The pressure is updated in such a way that the pressure field is free of
unphysical conditions in the boundary layer.

Our hybrid FV/FE solver is aimed to take advantage of the merits of both the FV and the FE
methods and avoid their shortcomings. For example, highly stretched cells (also known as high-
aspect-ratio cells) are commonly used inside the boundary layer for high Reynolds number flows
to resolve the boundary layer and reduce the number of cells. The stabilization parameters in the
stabilized FE-based flow solvers [4, 5] are related to the characteristic element length, which is not
well defined for high-aspect-ratio mesh elements. Owing to this, it is very difficult to control the
numerical dissipation of stabilized FE solvers. By contrast, the FV flow solver is very insensitive
to the aspect ratio of the mesh cells. It is quite common for the FV solvers to handle cells with
aspect ratios in the order of thousands [6, 7]. For this reason, we use the FV method to solve the
momentum equation. On the other hand, the classic Galerkin FE method is very suitable for the
elliptic typed equations like the pressure Poisson equation emerging from the segregated approach.
Therefore, the combination of the FV method and the FE method is expected to perform well in
the incompressible flow solvers based on the pressure project method, which has been confirmed
by our earlier work [1].

Our hybrid solver has been demonstrated to possess such features as (1) free of velocity–pressure
odd–even decoupling phenomenon, (2) correct temporal convergence rates for both velocity and
pressure, (3) free of unphysical pressure boundary layer, (4) good convergence in steady-state
simulations and (5) capability in predicting accurate drag, lift and the Strouhal numbers [1]. The
numerical examples we presented in [1] are all about low Reynolds number flows. When we tried
to run the same code for high Reynolds number flows, we ran into the instability problem. After
careful investigation, we found that the instability emerged first inside the boundary layer where
highly stretched cells are used. Further investigation showed that the evaluation of the advection
speed at cell interfaces in the FV solver is not dissipative enough to suppress the instability.
Moreover, the mesh node may lie outside the convex hull formed by its surrounding cell centers
when highly stretched cells are located in the region with large local wall surface curvature. When
this happens, the solution at the vertex computed using the approach in [1] may not be within
the range defined by the solutions at the vertex’s neighboring cell centers. In return, the solution
gradients inside the cell cannot be reliably reconstructed via the Gauss theorem, which utilizes the
solution at vertices. In this paper, we will describe some remedies to improve the robustness of
our hybrid solver for high Reynolds number flows.
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In addition to the high-aspect-ratio cell issue, we also need to incorporate an appropriate turbu-
lence model into the flow solver to compute the eddy viscosity. This is essential to accurately
predict the aerodynamic or hydrodynamic forces in high Reynolds number flows. However, the
turbulence modeling is the least reliable aspect in the computational fluid dynamics simulations.
Among the various turbulence modelings including the Reynolds-averaged Navier–Stokes (RANS)
models, detached eddy simulation (DES), large eddy simulation (LES) and direct numerical simu-
lation, the DES approach is the most practical and a fairly accurate turbulence model. The DES
model was originally proposed [8] to be an affordable hybrid RANS/LES model for flows at
realistic Reynolds numbers. In attached boundary layers, the DES model acts as a RANS model
and in massively separated regions the DES functions as the LES model. A modified distance to the
wall named the DES distance acts as a switch between the RANS mode and the LES mode. There
are two DES-based turbulence modelings. One is the one-equation Spalart–Allmaras (SA) DES
model [8, 9]. The other is the two-equation Shear Stress Transport DES model [10]. The SA-DES
model is gaining more popularity [11–13] due to its simplicity and fair accuracy. In this paper,
we incorporate the SA-DES turbulence model into our hybrid solver. The production and destruc-
tion terms in the SA-DES equation may cause overflows/underflows if not implemented properly.
Therefore, we will address in this paper some implementation issues to ensure the robustness of
the SA-DES model.

2. IMPLEMENTATION DETAILS FOR HIGH-ASPECT-RATIO CELLS

The details of our implicit hybrid FV/FE flow solver for incompressible flows are described in
[1]. In this section, we address a couple of issues regarding how to ensure the robustness of the
current hybrid solver for high Reynolds number flows. The purpose is to provide some remedies
to cure the deficiency of our hybrid solver for high Reynolds number flows.

2.1. Solution at vertices

It is mentioned in [1] that we use the Gauss theorem to compute the velocity gradients inside
each cell. The Gauss theorem states that for each component of the velocity u, denoted by u, at
cell i

∇ui = 1

|�i |
n f∑
k=1

uk Aknk (1)

where uk is the interpolated solution at the �th face center. uk is obtained by taking the arithmetic
average of the interpolated solutions at the vertices. Ak and nk are the area and outward unit
normal of the �th face, respectively. Hence, the key is to obtain the solution at vertices accurately.

Since the solution is only known at cell centers, we must use some type of interpolation method
to obtain the solution at mesh vertices. In [1], we assume that the solution at the small vicinity
region surrounding the vertex varies linearly and use the simple least square method to determine
the coefficients. Using this approach, the solution together with its derivatives can be obtained
simultaneously. This approach works very well for well-shaped regular meshes. However, for high-
aspect-ratio cells with large local surface curvature (Figure 1) where the reconstructed vertex lies
outside the convex hull formed by its surrounding cell centers, we found that the simple method
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vertex 

cell center 

Figure 1. Illustration of high-aspect-ratio cells with surface curvature.

based on the inverse distance weighting is more robust:

uv =
∑N

i=1 uc,i/ri∑N
i=1 1/ri

(2)

where ri =
√

(xi −xc)2+(yi − yc)2, the subscripts i and c stand for the vertex and the cell center,
respectively, and N is the number of surrounding cells. The inverse distance averaging ensures
that uv will not exceed the range defined by solutions at its surrounding cell centers.

2.2. Advection speed at faces

To compute the inviscid (advection) flux when solving the momentum equations, we use the flux
vector splitting technique to obtain the upwind flux. The flux vector is split according to the sign
of the local advection speed across the cell interface, i.e.

FINV = �+
i ju

L
i j +�−

i ju
R
i j

uLi j = ui +(xi j −xi ) ·∇ui

uRi j = u j +(xi j −x j ) ·∇u j

(3)

where the subscript ‘i j’ stands for the interface between cells ‘i’ and ‘j’, and ‘L’ and ‘R’ represent
the left and the right states, respectively. The advection speed at the face �±

i j = 1
2 (�i j ±|�i j |)

represents the positive and negative eigenvalues of the inviscid flux Jacobian matrix. A unique
solution, ui j , at the cell interface must be obtained to evaluate �i j =n·ui j , which is the advection
velocity normal to the interface. In [1], we use a sophisticated approach to compute ui j for high
accuracy. However, that approach causes the instability problem when the Reynolds number is
high. This is an evidence showing that the upwind flux computed in such a way is not dissipative
enough to suppress the instability. A common practice to increase the dissipation of the flux vector

splitting scheme is to compute �±
i j according to �±

i j = 1
2 (�i j ±

√
�2i j +�2), where � is a small number

[14]. This modification of �±
i j was proposed to correct the sonic glitch problem of the Steger–

Warming scheme in compressible flows. This modification works somewhat in our incompressible
solver. However, the addition of � is unphysical and it is difficult to determine the magnitude of
�. Instead, we found that if ui j is simply taken to be the arithmetic average of the interpolated
velocities at vertices of faces, the scheme will be stabilized for flows at a high Reynolds number
without sacrificing the accuracy. Recall that in Equation (1), uk is obtained in the same way.
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By implementing the aforementioned two cures, our new hybrid scheme is able to simulate high
Reynolds number laminar and turbulent flows. Note that we did not use any type of slope or flux
limiters in the simulations that will be presented in Section 4.

3. IMPLEMENTATION OF THE SA-DES TURBULENCE MODEL

The SA-DES model [9] is derived from the SA one-equation eddy-viscosity RANS model. Non-
dimensionalized by a set of reference values, uref, L ref and �ref, the one-equation SA-DES model
can be expressed as

��̃

�t
+u·∇ �̃= 1

�Re
[∇ ·((�+ �̃)∇ �̃)+cb2|∇ �̃|2]+cb1 S̃�̃− cw1 fw

Re

(
�̃

dDES

)2

(4)

where �̃ is the working variable in the order of the molecular viscosity � and Re is the Reynolds
number. If the molecular viscosity is constant, then �=1 in Equation (4). In Equation (4), the
second and the last term on the right-hand side are the production term and destruction term,
respectively. The details of the SA-DES model can be found in [9].

3.1. Modifications for robustness

The functions in the SA-DES equation are very non-linear functions of �̃. Numerical experience
shows that underflows and/or overflows of floating point values can easily happen if no care
is taken. To improve the robustness of the DES model, we made some modifications of these
functions shown in Equations (5)–(7). Figure 2 shows g vs. r , fw vs. g and fw vs. r , respectively:

fv1=

⎧⎪⎨
⎪⎩
0, ��2.5×10−5

�3

�3+c3v1
otherwise

(5)

g=

⎧⎪⎪⎨
⎪⎪⎩
250, r�3.0632301

r+cw2(r
6−r), 3.0632301>r�0.005

(1−cw2)r , r<0.005

(6)

fw =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

250

[
1+c6w3

2506+c6w3

]1/6

, g�250

g

[
1+c6w3

g6+c6w3

]1/6

, 250>g�0.005

g

cw3(1+c6w3)
1/6

, g<0.005

(7)
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Figure 2. Functions used in the SA-DES turbulence model.

3.2. Mesh design guideline

The DES model combines the LES mode and the RANS mode in a unified formulation. In the
LES mode, which is active in the separated region, the mesh is preferred to be isotropic. While
in the RANS mode, which is activated in the attached boundary layer, the highly stretched cells
are preferred to reduce the number of cells. Since the SA-DES model does not require any wall
functions, the mesh close to the solid body surface must be carefully designed to accurately predict
the aerodynamic/hydrodynamic forces. We follow the guideline in [15] to generate the high-aspect-
ratio cells near the body. The first layer thickness is a function of the Reynolds number, i.e.

y+ =0.172y∗Re0.9 (8)

where y∗ = y/L is the non-dimensional first-layer thickness next to the body and L is the body
length. Re is the flow Reynolds number based on the body length. y+ ≈1 is assumed in the
first layer during the mesh generation stage. Therefore, according to Equation (8), the first-layer
thickness of the mesh can be computed. Note that the actual y+ value varies over the surface and
depends on the local viscous flow solution.

4. NUMERICAL EXAMPLES

In this section, we first present some numerical results to demonstrate the performance of the
current hybrid solver for high Reynolds number flows. Following those is a simple 3-D laminar
case to show the 3-D capability of the current solver.

4.1. High Reynolds number over flat plate flow (Re=107)

It is well known that the incompressible flow passing the smooth flat plate becomes turbulent
when the Reynolds number exceeds 5×105. In this case, we chose the Reynolds number to be
107 to test the performance of the turbulence model. The mesh used in this simulation is shown
in Figure 3. The thickness of the first layer adjacent to the flat plate is 2.9×10−6 leading to the
maximum aspect ratio equal to 21 500. The mesh contains 9600 quadrilaterals. Figure 4 shows
the computed friction coefficient distribution along the plate. Also shown on the same figure are
the two empirical relations available in the literature [16]. Interestingly, the present results agree
well with one of the empirical relation, i.e. Nikuradse’s formulae. The solver converges well toward
the steady state, which can be seen from the momentum residual convergence history (Figure 4).
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Figure 3. Mesh used in the flat plate simulation.

Figure 4. Friction coefficient distribution (left) and convergence history (right). Turbulent case.

To verify the accuracy of the baseline solver, we also run a laminar case with Re=2×105. The
computed friction coefficient distribution is compared with the classic Blasius solution in Figure 5.
Excellent agreement can be seen. On the basis of the results, we are quite confident about the
accuracy of the current hybrid solver.

4.2. High Reynolds number flow around a high angle-of-attack NACA0015 airfoil
(Re=1.5×106,�=12◦)
This case is a more realistic example. The flight conditions are Mach=0.1235,Re=1.5×106 and
angle-of-attack �=12◦. We assume that the flow is incompressible and use the present hybrid
incompressible solver to simulate the flow. The mesh is a hybrid one containing 111 000 quadrilat-
eral cells near the airfoil and 48 862 triangular cells elsewhere. There are 223 unevenly distributed
points on the airfoil surface. The cell thickness of the first layer next to the airfoil is 10−5 times
the chord length, which leads to the maximum aspect ratio of about 3000. The code was run in the
unsteady mode even though a steady-state solution exists for this case. The time step is �t=0.002
and 7500 time steps have been run to reach the steady state. Figure 6 shows the near-field mesh
and the computed pressure field. Figure 7 shows the computed pressure and friction coefficients
on the airfoil surface. The role of the eddy viscosity is to postpone the flow separation and is
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Figure 5. Friction coefficient distribution for the laminar case.

Figure 6. Near-field mesh and computed solution around the NACA0015 airfoil: (a) mesh near the airfoil;
(b) pressure field; (c) velocity magnitude field; and (d) turbulent viscosity field.

essential for the correct prediction of the aerodynamic drag and lift. Figure 8 shows the drag
and lift convergence histories. The time-averaged drag and lift are 0.02 and 1.075, respectively.
Compared with the data provided in [17], we consider that the present results are fairly accurate.
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Figure 7. Computed pressure and friction coefficients on the NACA0015 airfoil surfaces.

Figure 8. Convergence history of drag and lift coefficients on the NACA0015 airfoil surfaces.

We would like to take this example to demonstrate the efficiency of the current hybrid solver.
Figure 9 is the convergence record of the momentum equation at the 200th time step taken from the
real simulation. ‘iit’ represents the outer Newton non-linear iterations. ‘gmres iter#’ stands
for the number of GMRES restarts. The integer before ‘subiters’ is the actual iterations (maximum
limited by the specified size of the Krylov space) taken within each GMRES restart. We use the
incomplete convergence in the GMRES solver in each Newton iteration. When the residual drops
more than one order of magnitude, the GMRES is stopped and the next Newton iteration begins.
When the total momentum residual has dropped more than three orders of magnitude, the solution
is considered to have converged in this time step. As can be seen, 1 to 3 GMRES iterations are
enough to reduce the residual one order of magnitude within each Newton iteration. This is a clear
sign to show that the current LU-SGS preconditioner is very effective. Moreover, the outer Newton
non-linear iterations converge well too. With four Newton iterations, the momentum residual drops
3.6 orders of magnitude. This effectiveness can be attributed in part to the accurate approximation
of the Jacobian matrix. The 200th time step is at the quite early stage of the simulation. At a later
stage toward the steady state, the convergence is even better. Figure 10 demonstrates a similar
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Figure 9. Convergence of the momentum equation in a time step.

Figure 10. Convergence of the turbulence equation in a time step.

convergence phenomenon for the turbulence equation in the same time step. It is clear that the stiff
non-linear source terms in the turbulence equation did not cause any convergence problem. As
for the convergence of the pressure Poisson equation, we need 825 iterations to drop five orders
of magnitudes. We use the conjugate gradient solver with ILU(0) preconditioner for the pressure
equation. Solving the pressure equation (1) is the most time-consuming task in the current code.
The pressure solver consumed 75% of the total computational cost. The momentum equations and
the turbulence equation consumed only 16 and 9%, respectively. We need to seek a more efficient
pressure solver to reduce the overall cost.
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5. CONCLUSIONS

In this paper, we extend our hybrid unstructured FV/FE solver for incompressible Navier–Stokes
flows at high Reynolds number. We first gave a brief overview of our baseline hybrid solver.
We then provide two remedies to cure the deficiency of our solver when simulating the high
Reynolds number flows where highly stretched cells exist. The one-equation Spalart–Allmaras
Detached Eddy Simulation (SA-DES) turbulence model is incorporated into the solver to provide
the turbulence viscosity. Some implementation issues are discussed to ensure the robustness of the
turbulence model. Numerical results demonstrate the performance of the current solver for high
Reynolds number flows. The resulting solver is stable and accurate for both laminar and turbulent
flows. No slope or flux limiters are employed for all simulations presented here. In addition,
the realistic simulation also showed the efficiency of the current solver, especially the LU-SGS
preconditioners for the momentum equations and the turbulence equation.

A more efficient Poisson equation solver will be sought to improve the efficiency and reduce
the overall computational cost.
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